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space and singular warp factors. We show that the complete solution is regular around
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form of the most general supersymmetric solutions that can be obtained from an Atiyah-
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the bubbling procedure applied to the ambi-polar Eguchi-Hanson metric can convert it to

a global AdS2 × S3 compactification.
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1. Introduction

Geometric transitions have proven to be an essential part of understanding string the-

ory and strongly coupled quantum field theories. It has also become evident that such

transitions will play a central role in understanding the geometry of microstates of the

three-charge black hole or black ring in five dimensions. Indeed, one can argue [1] that

a very large number of horizonless three-charge brane configurations, when brought to

strong effective coupling, undergo a geometric transition and become smooth horizonless

geometries with black-hole or black-ring charges. The black hole and black ring charges

come entirely from fluxes wrapping topologically non-trivial cycles, or bubbles. All these

“bubbling black hole” geometries are dual to states of the conformal field theory describing
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the three-charge black hole, and their physics strongly supports the idea that black holes in

string theory are not fundamental objects, but rather effective thermodynamic descriptions

of a huge number of horizonless configurations (see [2, 3] for a review).

The simplest starting point for the construction of three-charge geometries is M-theory,

where one takes the eleven-dimensional supersymmetric metrics to have the form [4, 5]:

ds2
11 = ds2

5 +
(
Z2Z3Z

−2
1

) 1

3 (dx2
5 + dx2

6)

+
(
Z1Z3Z

−2
2

) 1

3 (dx2
7 + dx2

8) +
(
Z1Z2Z

−2
3

) 1

3 (dx2
9 + dx2

10) . (1.1)

The six coordinates, xA, parameterize the compactification torus, T 6, and the five-

dimensional space-time metric has the form:

ds2
5 ≡ − (Z1Z2Z3)

− 2

3 (dt + k)2 + (Z1Z2Z3)
1

3 ds2
4 . (1.2)

When constructing black-hole or black-ring solutions [4, 6 – 8, 12], the spatial “base metric,”

ds2
4, is usually taken to be that of flat R

4, however supersymmetry is preserved if one has

any hyper-Kähler metric on the the base [9].

To construct bubbling solutions corresponding to five-dimensional black holes and

black rings, the asymptotic structure of ds2
4 must still be that of R

4 and the conventional

wisdom suggested that this implies that the hyper-Kähler base metric must be flat R
4,

globally. The breakthrough came via [1, 10, 11], where it was realized that the base metric

could be “ambi-polar,” that is, it could change its overall signature from (+,+,+,+) to

(−,−,−,−) in some regions. The warp factors, ZI , are also singular and change sign, but

the complete five-dimensional (or eleven-dimensional) solution is still a physical, Lorentzian

metric. This opens up a vast number of new possibilities for constructing bubbling black

holes using four-dimensional hyper-Kähler base metrics.

The construction of the most general solutions proceeds in several steps using the lin-

ear system of “BPS equations” [4]. One first chooses the ambi-polar, hyper-Kähler base

metric. This base will generically have non-trivial two-cycles (“bubbles”) with moduli

that determine the size and orientation of the cycles. Dual to these bubbles are normal-

izable,1 self-dual, harmonic two-forms (the compact cohomology). There are also three

non-normalizable, anti-self-dual, harmonic two-forms and these correspond to the three

complex structures of the hyper-Kähler base.2 The normalizable harmonic two-forms de-

termine the electromagnetic fluxes, which in turn source the warp factors, ZI . Finally,

the warp factors and the fluxes combine to give the source in the linear equation for the

angular momentum vector, k, in (1.2).

This procedure is easiest implemented when one considers ambi-polar Gibbons-

Hawking (GH) metrics, which are hyper-Kähler metrics with a tri-holomorphic U(1) sym-

1Here we are, to some extent, misusing the term “normalizable:” The basic “component” fluxes are

normalizable in that they fall off sufficiently rapidly at infinity but the component fluxes are divergent on the

critical surfaces where the metric of the base changes sign. However, the physical fluxes get two contributions

in which these divergences cancel and so the ultimate flux that we construct will be normalizable.
2If one reverses the orientation of the base then the self-dual and anti-self-dual forms will, of course, be

interchanged.
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metry.3 All five-dimensional, supersymmetric solutions with Gibbons-Hawking base can

be written in terms of several harmonic functions [9, 12, 13]; choosing an ambi-polar GH

metric (with positive and negative GH charges) and specific harmonic functions ensures

that the resulting “bubbling” solutions are horizonless, smooth, and have black hole and

black ring charges [1, 11, 14 – 18].

At the last step of the construction, some of the moduli of the bubbles have to be

fixed so as to remove closed time-like curves (CTC’s). This step has a simple, physical

interpretation: The ambi-polar base metric typically arises because one has used both

positive and negative geometric charges (e.g. GH charges) that tend to attract one another

and would cause the space to collapse if they were not stabilized in some manner. If one

seeks BPS solutions without including any physical stabilizing mechanism, the instability

will manifest itself through the appearance of closed time-like curves (CTC’s). On the other

hand, a flux threading a cycle tends to cause that cycle to expand. Hence, by distributing

fluxes on the space one can balance the attraction of the geometric charges against the

expansion caused by fluxes. The bubbles thus settle down at a size where the attractive

and expansion forces cancel and the result is a stable BPS solution free of CTC’s. One

generically finds that the sizes of the bubbles are set in terms of the fluxes threading

them. Other bubble moduli, like orientations, remain free. The equations that express this

balance of fluxes and bubble sizes are called the “bubble equations” [1, 11].

Studying solutions that have an ambi-polar Gibbons-Hawking base has quite a few

advantages: the construction of these solutions is straightforward, the solutions can be

related to four-dimensional, multi-centered “D6 - D6” solutions [19, 13, 20],4 they can

arise from the geometric transition of circular three-charge supertubes [21, 1], and they

can describe microstates both of zero-entropy black holes and black rings [15], or of black

holes and black rings with macroscopic horizons [16, 22].

Despite the remarkable results that have been obtained using Gibbons-Hawking geome-

tries, such metrics represent a major restriction. In particular, they all have a translational

(tri-holomorphic) U(1) isometry [24], which is a combination of the two U(1)’s in the R
2

planes that make up the R
4 in the asymptotic region.5 Thus, bubbling solutions with a GH

base cannot capture quite a host of interesting physical processes that do not respect this

symmetry, like the merger of two BMPV black holes, or the geometric transition of a three-

charge supertube of arbitrary shape. In [1] it was argued that this geometric transition

results in bubbling solutions that have an ambi-polar hyper-Kähler base, and that depend

on a very large number of arbitrary continuous functions. Counting these solutions is a

way to prove the general conjecture that black holes are ensembles of smooth horizonless

configurations. It is therefore of great interest to construct and understand them.

In this paper we will take a step in this direction by considering such metrics that

also have a general U(1) isometry. These metrics are much less restrictive than GH-based

3Tri-holomorphic means that the U(1) preserves all three complex structures of the hyper-Kähler metric.
4In such compactifications, the bubble equations correspond to the “integrability equations” discussed

in [19].
5Alternatively, one can see that the tri-holomorphic U(1) necessarily lies in one of the SU(2) factors of

SO(4) ≡ (SU(2) × SU(2))/Z2.
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metrics. Moreover, they could also arise from the geometric transition of supertubes that

preserve a rotational U(1), and hence could also depend on an arbitrarily large number

of continuous functions. Constructing and counting such solutions is also of interest in

the program to prove that black holes are ensembles of smooth horizonless configurations.

Even if the entropy in these symmetric configurations will be smaller than the entropy of

the black hole, it might give some insight into the structure and charge dependence of the

most general, non-symmetric configuration.

An important feature of all bubbled solutions is that the ambi-polar base space and the

fluxes dual to the homology are singular on the critical surfaces where the metric changes

sign. For ambi-polar GH spaces it was possible to use the explicit solutions to show that

all these singularities were canceled and the final result was a regular, five-dimensional

space-time background in M-theory. Our analysis here will illustrate how this happens

for the general U(1)-invariant bubbled background, and this work suggests that the most

general bubbling geometries will have also this property.

Before beginning, we would like to stress that constructing solutions that only have a

rotational U(1) is a rather tedious and challenging task. For classical black holes and black

rings, only two such solutions exist: one describing a black ring with an arbitrary charge

density [25], and one describing a black ring with a black hole away from the center of the

ring [26]. In this paper we will succeed in constructing the first explicit bubbling solution in

this class, using a base that is a generalization of the Atiyah-Hitchin metric.6 Nevertheless,

the most general bubbling solutions that only have a rotational U(1) invariance will be much

more complicated, and perhaps even impossible to write down explicitly.

2. Prelude

It has been known for a long time that hyper-Kähler metrics with a generic (rotational) U(1)

isometry can be obtained by solving the SU(∞) Toda equation [27 – 29]. The coordinates

can be chosen so that the metric takes the form:

ds2
4 = V −1 (dτ + Aidxi)2 + V γij dxidxj , (2.1)

with γij = 0 for i 6= j and

γ11 = γ22 = eν , γ33 = 1 , (2.2)

for some function, ν. The function, V , and the vector field, A, are given by

V = ∂zν , A1 = ∂yν , A2 = −∂xν , A3 = 0 , (2.3)

and the function ν must satisfy:

∂2
x ν + ∂2

y ν + ∂2
z (eν) = 0 . (2.4)

This equation is called the SU(∞) Toda equation, and may be viewed as a continuum

limit of the SU(N) Toda equation. Even though the SU(∞) Toda equation is integrable,

6Our solutions might also be useful to construct black holes or black rings in the Atiyah-Hitchin space,

although this has not been the focus of this paper.
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surprisingly little is know about its solutions, and there appears to be no known analog of

the known soliton solutions of the SU(N) Toda equation. On the other hand, the metric

is determined in terms of a single function and (2.1) is a relatively mild generalization of

the Gibbons-Hawking metrics.

Our purpose here is to construct three-charge solutions based upon ambi-polar hyper-

Kähler metrics with generic (non-tri-holomorphic) U(1) isometries. We will do this in two

different ways, first by building such solutions using a general metric of the form (2.1) on

the base space. We will then consider the Atiyah-Hitchin metric: This metric has an SO(3)

isometry, but none of the U(1) subgroups is tri-holomorphic. Just as with the GH metric,

the metric (2.1), is ambi-polar if we allow V = ∂zν to change sign. Thus the primary issue

of regularity in the five-dimensional metric arises on the critical surfaces where V = 0.

While we will not be able to construct general solutions as explicitly as can be done for

GH metrics, we will show that the five-dimensional metric is regular and Lorentzian in the

neighborhood of these critical surfaces.

The standard Atiyah-Hitchin metric [30] arises as the solution of a first order, non-

linear Darboux-Halphen system for the three metric coefficient functions. This system is

analytically solvable in terms of the solution of a single, second order linear differential

equation. Indeed, the solutions of the latter equation are expressible in terms of elliptic

functions. The standard practice is to choose the solution of this linear equation so that the

metric functions are regular, and the result is a smooth geometry that closes off at a non-

trivial “bolt,” or two-cycle in the center. We will show that if one selects the most general

solution of the linear differential equation, then one obtains an ambi-polar generalization

of the Atiyah-Hitchin metric. Moreover, one can set up regular, cohomological fluxes on

the two-cycle and the resulting warp factors render the five-dimensional metric perfectly

smooth and regular across the critical surface.

The ambi-polar Atiyah-Hitchin metric actually continues through the bolt and initially

appears to have two regions, one on each side of the bolt, that are asymptotic to R
3 × S1.

It thus looks like a wormhole. Unfortunately, the solution cannot be made regular on

both its asymptotic regions. Indeed, upon imposing asymtotic flatness on one side of the

wormhole, one finds that the warp factors change sign twice, once on the critical surface

and again as one enters one of the asymptotic regions. Thus the critical surface is regular,

but there is another potentially singular region elsewhere. However, we find that if we tune

the flux through the bubble to exactly the proper value, one can pinch off the metric just

as the warp factors change sign for the second time. The result is a Lorentzian metric, that

extends smoothly through the critical surface (V = 0). The pinching off of the metric does

however result in a curvature singularity that is very similar to the one encountered in the

Klebanov-Tseytlin solution [31]. We will argue that the singularity of our new, non-trivial

BPS solution is also a consequence of the very high level of symmetry, and that it will be

resolved via a mechanism similar to that in [32].

We also consider solutions based upon an ambi-polar generalization of the Eguchi-

Hanson metric, obtained by making an analytic continuation of the standard Eguchi-
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Hanson metric, and extending the range of one of the coordinates.7 The singular structure

of this metric is precisely what is needed to render it ambi-polar. Hence, upon adding

fluxes and warp factors this metric gives us regular five-dimensional solutions that have

similar features to the bubling Atiyah-Hitchin solution. There is also one surprise: One of

the Eguchi-Hanson “wormhole” solutions is completely regular everywhere and is nothing

other than the global AdS2 × S3 Robinson-Bertotti solution.

In section 3 we will review the BPS equations and discuss their solution for a metric

with a generic U(1) isometry. In section 4 we will review the properties and structure

of the Atiyah-Hitchin metric. Section 5 is devoted to the explicit solution of the system

of BPS equations for the Atiyah-Hitchin metric and its ambi-polar generalization, and a

discussion on regularity and CTC’s. In section 6 we present the bubbled solutions on the

generalized (ambi-polar) Eguchi-Hanson background and we show how they closely parallel

the results for the generalized (ambi-polar) Atiyah-Hitchin solution. We also show how to

obtain global AdS2 ×S3 as a bubbling Eguchi-Hanson solution. Finally, section 7 contains

our conclusions and a discussion of possible future work.

3. The general U(1) invariant geometries

3.1 The BPS equations

The supersymmetric, BPS solutions to M-theory with metric given by (1.1) have Maxwell

three-form potential given by:

C(3) = A(1) ∧ dx5 ∧ dx6 + A(2) ∧ dx7 ∧ dx8 + A(3) ∧ dx9 ∧ dx10 , (3.1)

where the A(I), I = 1, 2, 3, are one-form Maxwell potentials in the five-dimensional space-

time and depend only upon the coordinates, yµ, µ = 1, . . . , 4, that parameterize the spatial

directions of ds4. It is convenient to introduce the Maxwell “dipole field strengths,” Θ(I),

obtained by removing the contributions of the electrostatic potentials:

Θ(I) ≡ dA(I) + d
(
Z−1

I (dt + k)
)
. (3.2)

The most general supersymmetric configuration is then obtained by solving the BPS equa-

tions:

Θ(I) = ⋆4 Θ(I) , (3.3)

∇2ZI =
1

2
CIJK ⋆4 (Θ(J) ∧ Θ(K)) , (3.4)

dk + ⋆4dk = ZI Θ(I) , (3.5)

where ⋆4 is the Hodge dual taken with respect to the four-dimensional base metric, ds2
4,

and for the structure constants are given by CIJK ≡ |ǫIJK |. The BPS equations generalize

trivially to more general U(1)N five-dimensional ungauged supergravities.

7The unextended version of this metric was also discussed in the original Eguchi and Hanson paper [33],

but was discarded because it is singular.
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The first step in solving this linear system is to identify the self-dual, harmonic two-

forms, Θ(I). In a Kähler manifold this is, at least theoretically, straightforward because

such two-forms are related to the moduli of the metric. For a hyper-Kähler metric there

are three complex structures, J(i), i = 1, 2, 3, and given a harmonic two-form, ω, one can

define three symmetric tensors via:

h(i)
µν ≡ J(i) µ

ρ ωρν − J(i) ν
ρ ωµρ . (3.6)

These tensors may be viewed as metric perturbations and as such they represent perturba-

tions that preserve the hyper-Kähler structure. In particular, they are zero modes of the

Lichnerowicz operator.

For the metric (2.1) it is convenient to introduce vierbeins:

ê1 = V −1/2(dτ + Aidxi) , ê2 = V 1/2eν/2dx , ê3 = V 1/2eν/2dy , ê4 = V 1/2dz ,

(3.7)

and introduce a basis for the self-dual and anti-self dual two forms:

Ω
(1)
± = (dτ + A2dy) ∧ dx ± V dy ∧ dz = e−ν/2(ê1 ∧ ê2 ± ê3 ∧ ê4) , (3.8)

Ω
(2)
± = (dτ + A1dx) ∧ dy ± V dz ∧ dx = e−ν/2(ê1 ∧ ê3 ± ê4 ∧ ê2) , (3.9)

Ω
(3)
± = (dτ + A1dx + A2dy) ∧ dz ± eνV dx ∧ dy = (ê1 ∧ ê4 ± ê2 ∧ ê3) . (3.10)

The three Kähler forms are then given by [29]:

J(1) = eν/2 cos

(
τ

2

)
Ω

(1)
− + eν/2 sin

(
τ

2

)
Ω

(2) ,
− (3.11)

J(2) = eν/2 sin

(
τ

2

)
Ω

(1)
− − eν/2 cos

(
τ

2

)
Ω

(2)
− , (3.12)

J(3) = Ω
(3)
− , (3.13)

and they satisfy the proper quaternionic algebra:

J(i) µ
ρ J(j) ρ

ν = δij δν
µ − εijk J(k) µ

ν . (3.14)

Following [1], we make an Ansatz for the harmonic, self-dual field strengths, Θ(I):

Θ(I) =

3∑

a=1

∂a(ν̇
−1KI)Ω

(a)
+ , (3.15)

where the dot represents derivative with respect to z. We then find that the KI must

satisfy the linearized Toda equation (it follows from (2.4) that ν̇ also solves this equation):

LT KI ≡ ∂2
xKI + ∂2

yKI + ∂2
z (eνKI) = 0 . (3.16)

For later convenience, we note that there are relatively simple vector potentials such that

Θ(I) = dB(I):

B(I) ≡ ν̇−1 KI (dτ + A) + ~ξ (I) · d~x , (3.17)

– 7 –
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where

(~∇× ~ξ (I))j = −∂i

(
γijeνKI

)
. (3.18)

Hence, ~ξ (I) is a vector potential for magnetic monopoles located at the singular points of

KI .

Since the KI satisfy the linearized Toda equation, we see the direct relationship be-

tween the harmonic forms and linearized fluctuations of the metric. In practice, (3.6)

and (3.15) do not yield exactly the same result as the direct substitution of fluctuations in

ν into (2.1) but they are equivalent up to infinitesimal diffeomorphisms. For example, the

metric fluctuation obtained from using (3.15) and J(3) in (3.6) is identical with the metric

fluctuation, ν → ν+ǫKI , combined with the infinitesimal diffeomorphism, z → z−ǫν̇−1KI .

The second BPS equation reduces to:

LZI = ν̇ eν CIJK γij∂i

(
KJ

ν̇

)
∂j

(
KK

ν̇

)
, (3.19)

where γij is the three-metric in (2.2) and L is given by:

LF ≡ ν̇ eν ∇2
γF = ∂2

xF + ∂2
yF + ∂z(e

ν∂zF ) . (3.20)

The operator, ∇2
γ , denotes the Laplacian in the metric γij .

The natural guess for the solution is to follow, once again, [1] and try:

ZI ≡ 1

2
CIJK ν̇−1 KJKK + Z

(0)
I . (3.21)

One then finds that Z
(0)
I is not a solution of the homogeneous equation, but

LZ
(0)
I = −∂z

(
1

2
eν CIJK KJKK

)
. (3.22)

Intriguingly, one can also check that:

LT

(
1

2
CIJK ν̇−1 KJKK

)
= ν̇ eν CIJK γij∂i

(
KJ

ν̇

)
∂j

(
KK

ν̇

)
, (3.23)

where LT is the linearized Toda operator (3.16) and so one has the explicit solution but to

the wrong equation.

The important point, however, is that the source on the right-hand side of (3.22) is

regular as ν̇ → 0, and so Z
(0)
I is regular on any critical surface where one has ν̇ = 0.

To solve the last BPS equation for the angular momentum vector, k, we make the

Ansatz:

k = µ (dτ + A) + ω , (3.24)

where ω is a one form in the three-dimensional space defined by (x, y, z). Define yet another

linear operator:

L̃F ≡ eνγij ∂i ∂jF = ∂2
xF + ∂2

yF + eν ∂2
zF , (3.25)

– 8 –
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and then one finds that µ and ω must satisfy:

L̃µ = ν̇−1 ∂i

(
ν̇ eν γij

3∑

I=1

ZI ∂j

(
KI

ν̇

))
, (3.26)

and

(~∇× ~ω)i = ν̇ eνγij∂jµ − µ ∂j(e
νγij ν̇) − ν̇ eν ZI γij ∂j

(
KI

ν̇

)
. (3.27)

Note that the integrability of the equation for ω is precisely the equation (3.26) for µ,

provided that one also uses the fact that ν satisfies (2.4). The structure of these equations

also closely parallels those encountered for a GH base metric [1, 11].

Once again one can try a form of the solution based upon the results for GH spaces.

Define µ0 by:

µ =
1

2
ν̇−1 ZI KI − 1

12
ν̇−2 CIJK KIKJKK + µ0

=
1

2
ν̇−1 Z

(0)
I KI +

1

6
ν̇−2 CIJK KIKJKK + µ0 , (3.28)

and one then finds that µ0 must satisfy:

L̃µ0 = −1

2
eν KI ∂zZ

(0)
I +

1

12
eν CIJK KIKJKK . (3.29)

Again note that the source is regular as ν̇ → 0 and so µ0 will be similarly regular as ν̇ → 0.

Finally, if one substitutes these expressions for ZI and µ into (3.27), one obtains:

(~∇× ~ω)i = ν̇ eνγij∂jµ0 − µ0 ∂j(e
νγij ν̇) +

1

2
KI∂j

(
eνγijZ

(0)
I

)
− 1

2
eνγijZ

(0)
I ∂jK

I

−1

6
δi
3 eν CIJK KIKJKK , (3.30)

where the δi
3 means that the last term only appears for i = 3. Note that ~ω has sources

that are regular as ν̇ → 0 and so ~ω will be regular on critical surfaces.

Therefore, in this more general class of metrics, we cannot find the solutions to the

BPS equations as explicitly as one can for GH base metrics. However, one can completely

and explicitly characterize the singular parts of the solutions as one approaches critical

surfaces where ν̇ → 0.

3.2 Regularity on the critical surfaces

Consider the behavior of the metric (1.2) as ν̇ → 0. The warp factors, ZI diverge as ν̇−1,

µ diverges as ν̇−2 and so the only potentially divergent part of the metric is:

−
(
Z1Z2Z3

)− 2

3 µ2(dτ + A)2 +
(
Z1Z2Z3

) 1

3 ν̇−1 (dτ + A)2 =
(
Z1Z2Z3 ν̇3

)− 2

3 Q (dτ + A)2 ,

(3.31)

where

Q ≡ Z1 Z2 Z3 ν̇ − µ2 ν̇2 . (3.32)

– 9 –
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Every other part of the metric has a finite limit as ν̇ → 0. Since (Z1Z2Z3 ν̇3) is finite as

ν̇ → 0, we need to show that Q is finite. Using (3.21) and (3.28) one has

Q = ν̇−2

[(
K2K3 + ν̇ Z

(0)
1

)(
K1K3 + ν̇ Z

(0)
2

)(
K1K2 + ν̇ Z

(0)
3

)

−
(

K1K2K3 +
1

2
ν̇ Z

(0)
I KI + ν̇2µ0

)2]

→
(
Z

(0)
1 Z

(0)
2 K1K2 + Z

(0)
1 Z

(0)
3 K1K3 + Z

(0)
2 Z

(0)
3 K2K3

)

−1

4

(
ν̇ Z

(0)
I KI

)2 − 2 (K1K2K3)µ0 , (3.33)

as ν̇ → 0. Thus the metric is finite on the critical surfaces. To avoid CTC’s, Q must also

be positive everywhere and, as with solutions on GH base metrics, this will depend upon

the details of particular solutions.

The Maxwell fields are also regular on the critical surfaces. From (3.15) we see that

the Θ(I) are, in fact, singular on the critical surfaces, however from (3.2) and (3.17) we see

that the complete Maxwell fields are given by:

A(I) = −Z−1
I

(
dt + µ (dτ + A) + ω

)
+ ν̇−1 KI (dτ + A) + ~ξ (I) · d~x . (3.34)

As we remarked earlier, ω is regular on the critical surfaces and the vectors, ~ξ (I), defined

by (3.18) are similarly regular. The only possible singular terms are thus

A(I) ∼
(
ν̇−1 KI − Z−1

I µ
)
(dτ + A)

∼ ν̇−1
(
KI −

(
1

2
CIJK KJ KK

)−1

K1 K2 K3
)
(dτ + A) = 0 . (3.35)

Thus the A(I) are regular on the critical surfaces.

3.3 Asymptotia

We would like the four dimensional base metric to be asymptotic to R
4 and there are

several ways to arrange this, depending upon how the U(1) defined by τ -translations acts

in R
4. The simplest is to take ν ∼ log(z) and then:

ds2
4 ∼ z dτ2 + z−1dz2 + dx2 + dy2 = dr2 + r2 dφ2 + dx2 + dy2 , (3.36)

where z = 1
4r2 and τ = 2φ. This metric is that of R

2 × R
2 provided that τ has period 4π

so that φ has period 2π. The U(1) acts in one of the R
2 planes and so this is the natural

boundary condition appropriate to a system with this symmetry.

Another possible boundary condition is to require:

ν ∼ log

(
z2

(
1 + 1

8 (x2 + y2)
)2

)
, (3.37)

and then

ds2
4 ∼ 2 z−1dz2 +

1

2
z (dτ + A0)

2 + z
dx2 + dy2

(
1 + 1

8 (x2 + y2)
)2 , (3.38)

– 10 –



J
H
E
P
0
8
(
2
0
0
7
)
0
0
4

where

A0 =
1

2

(xdy − ydx)(
1 + 1

8 (x2 + y2)
) . (3.39)

Now set x = tan θ
2 cos φ and y = tan θ

2 sin φ and one arrives at the metric:

ds2
4 ∼ 2 z−1dz2 +

1

2
z (dτ + 2 (1 − cos θ) dφ)2 + 2 z

(
dθ2 + sin2 θdφ2

)

∼ dr2 +
1

4
r2

(
σ2

1 + σ2
2 + σ2

3

)
, (3.40)

where z = 1
8r2, the σi are the left invariant one-forms:

σ1 ≡ cos ψ dθ + sin ψ sin θ dφ ,

σ2 ≡ sinψ dθ − cos ψ sin θ dφ ,

σ3 ≡ dψ + cos θ dφ , (3.41)

and τ = −2(ψ + φ). Once again, the U(1) generated by τ acts in one of the R
2 planes in

R
2 × R

2 = R
4.

With either of these asymptotic behaviors, the integral:
∫ √

γ γij ∂iν ∂jν d3x . (3.42)

converges at infinity. The integrand is manifestly non-negative and if ν is regular every-

where then we may integrate by parts. This generates the Toda equation, (2.4), and so the

integral vanishes. We therefore conclude that the only solution that is regular on R
3 is a

constant. Hence, ν must have singularities on R
3.

While general Toda metrics may have complicated singularities, we are interested in

metrics that, upon adding fluxes, give rise to smooth bubbling solutions. For Gibbons-

Hawking base metrics, one has positive and negative sources (GH points) for the metric

function, V , and pairs of these GH points then define the homology cycles. If one moves

sufficiently close to one of these singular points of V in a GH metric, then the metric is, in

fact, regular and caps off into a piece of R
4 (perhaps divided out by a discrete group) with

SO(4) rotation symmetry. Guided by this, it is natural to consider singularities in ν that

lead to local geometry that looks like R
4/Zq for some integer, q, and which locally has an

SO(4) invariance about the singular point.

Equivalently, near the singularities of ν, the Toda metric has a U(1) × U(1) ⊂ SO(4)

symmetry and so can be mapped into a Gibbons-Hawking form. Thus the interesting class

of metrics for bubbling should be those that can be put into Gibbons-Hawking form in the

immediate vicinity of each singular point of ν. The non-trivial part of the Toda solution

then relates to the transitions between these special regions. One can thus think of the

Toda function as quilting together a collection of GH pieces.

It is elementary to see from the foregoing that, in the neighborhood of a singular point

of charge ±1, one must have:

ν ∼ log |z − α| , ±(z − α) > 0 . (3.43)
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With these choices the metric becomes precisely that of R
4 and is positive or negative

definite depending on the sign of the charge. By taking the z → 0 limit in (3.37) one can

also see that for a point of charge +2 one has ν ∼ 2 log |z − α|. One can continue to

higher charges via a series expansion in z but the geometry gets more complicated. This

is because a charge q leads to a local geometry that is R
4/Zq. In GH spaces this discrete

identification was factored out of the U(1) fiber, but in a general Toda geometry it will

be factored out of the base and so the geometry near the singular points of ν will involve

orbifold points in R
3. It is therefore simpler to restrict to geometric charges of ±1 and take

the view that other geometric charges can be obtained via mergers of the more fundamental

unit charges.

While we do not yet know how to progress beyond these simple observations, we believe

that similar considerations will apply to bubbled geometries constructed from completely

general ambi-polar, hyper-Kähler metrics. In the neighborhood of singular points of the

Kähler potential they will locally be of GH form and so one might at least construct

an approximate description as a quilt of GH patches with transition functions. Indeed,

with such an approximating metric one might be able to establish existence theorems and

perhaps even count moduli in the same manner that Yau established the existence of

Calabi-Yau metrics.

4. The Atiyah-Hitchin metric

The Atiyah-Hitchin metric has the form [30, 29]:

ds2 =
1

4
a2b2c2 dη2 +

1

4
a2 σ2

1 +
1

4
b2 σ2

2 +
1

4
c2 σ2

3 , (4.1)

where the σi are defined in (3.41) and satisfy dσi = 1
2ǫijkσj ∧ σk. For (4.1) to be hyper-

Kähler, the functions a(η), b(η) and c(η) must satisfy:

ȧ

a
=

1

2

(
(b − c)2 − a2

)
(4.2)

ḃ

b
=

1

2

(
(c − a)2 − b2

)
(4.3)

ċ

c
=

1

2

(
(a − b)2 − c2

)
, (4.4)

where the dot denotes d
dη .

4.1 The standard solution

This system of equations may be mapped onto a Darboux-Halphen system by introducing

w1 = bc, w2 = ac and w3 = ab. One then finds

d

dη
(w1+w2) = −2w1w2,

d

dη
(w2+w3) = −2w2w3,

d

dη
(w1+w3) = −2w1w3 . (4.5)

To solve this system one first defines a new coordinate, θ, via

dη =
dθ

u2(θ)
, (4.6)
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where u is defined to be the solution of

d2u

dθ2
+

u

4 sin2 θ
= 0 . (4.7)

One then finds that the solutions are given by [30]:

w1 = −uu′ − 1

2
u2 csc θ ,

w2 = −uu′ +
1

2
u2 cot θ ,

w3 = −uu′ +
1

2
u2 csc θ , (4.8)

where the prime denotes derivative with respect to θ.

One can find the explicit solution for u in terms of elliptic functions:

u(θ) =
c1

π

√
sin θ K

(
sin2 θ

2

)
+

c2

π

√
sin θ K

(
cos2

θ

2

)
, (4.9)

where c1 and c2 are constants and

K(x2) ≡
∫ π/2

0
(1 − x2 sin2 ϕ)−1/2 dϕ . (4.10)

A first order system for three functions like (4.5) should involve three constants of inte-

gration. These are represented by c1, c2 and the trivial freedom to shift η by a constant.

However, in order to get a regular, positive definite metric one must choose only one of the

non-trivial solutions, which is then canonically normalized to:

u(θ) =
1

π

√
sin θ K

(
sin2 θ

2

)
. (4.11)

With this choice, the function u(θ) is non-vanishing on (0, π) and so the change of vari-

ables (4.6) is well-defined. Moreover one has w1 < 0, w2 < 0 and w3 > 0 on (0, π) and so

the metric coefficients:

a2 =
w2 w3

w1
, b2 =

w1 w3

w2
, c2 =

w1 w2

w3
, (4.12)

are all positive.

4.2 The geometry of the Atiyah-Hitchin metric

The standard Atiyah-Hitchin geometry is asymptotic to R
3×S1 and has a non-trivial two-

cycle, or “bolt” in the center. To see this we first look at the structure at infinity, which

corresponds to θ → π. In this limit one has:

u(θ) ∼ − 1

π

√
2 cos

θ

2
log

(
cos

θ

2

)
, dη ∼ π2 dθ

2 cos θ
2

(
log

(
cos θ

2

))2 , (4.13)

w1(θ) ∼ 1

π2
log

(
cos

θ

2

)
, w2(θ) ∼ 1

π2
log

(
cos

θ

2

)
, w3(θ) ∼ 1

π2

(
log

(
cos

θ

2

))2

,
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which implies

a(θ) ∼ 1

π
log

(
cos

θ

2

)
, b(θ) ∼ 1

π
log

(
cos

θ

2

)
, c(θ) ∼ 1

π
. (4.14)

Define r = − log(cos θ
2 ) and then the asymptotic form of the metric becomes:

ds2 ∼ 1

4π2

(
dr2 + r2(σ2

1 + σ2
2) + σ2

3

)
, (4.15)

which indeed has the structure of a U(1) fibration over R
3.

At the other end of the interval, θ → 0, one finds:

u(θ) ∼ 1

2
θ

1

2 − 1

96
θ

5

2 + O(θ
7

2 ) , dη ∼ 4θ−1dθ

w1(θ) ∼ −1

4
− 1

2048
θ4 + O(θ6) , w2(θ) ∼ − 1

32
θ2 − 1

3072
θ4 + O(θ6) ,

w3(θ) ∼ 1

32
θ2 +

7

3072
θ4 + O(θ6) , a(θ) ∼ 1

16
θ2 +

1

384
θ4 + O(θ6),

b(θ) ∼ 1

2
+

1

64
θ2 + O(θ4) , c(θ) ∼ 1

2
− 1

64
θ2 + O(θ4) (4.16)

Define ρ = 1
64θ2 and the metric near θ = 0 has the form:

ds2 ∼ dρ2 + 4 ρ2 σ2
1 +

1

16

(
σ2

2 + σ2
3

)
(4.17)

Thus we see the “bolt” at the origin. Note that the scale of the metric has been fixed

and the radius of the bolt has been set to 1
4 . The fact that the coefficient of σ1 vanishes

as ∼ 4ρ2 also has important implications for the global geometry. There is a very nice

discussion of this in the appendices of [34].

For future reference, we will chose the constant of integration (4.6) so that η → 0 at

infinity (θ = π) and take:

η ≡ −
∫ π

θ

dθ

u2
. (4.18)

With this choice, η has the following asymptotic behavior:

η ∼ 4 log(θ) as θ → 0 ; η ∼ −π2

r
as θ → π , (4.19)

where r = − log(cos θ
2).

Since there is a non-trivial two-cycle, there must be a non-trivial, dual element of

cohomology. That is, there must be precisely one square-integrable, harmonic two-form. In

particular, this means the two-form must be a singlet under SO(3). For earlier discussions

on harmonic two-forms on the Atiyah-Hitchin manifold see [24, 37]. To determine this two

form, it is convenient to introduce the vierbeins:

e1 = −1

2
abc dη , e2 =

1

2
aσ1 , e3 =

1

2
b σ2 , e4 =

1

2
c σ3 , (4.20)
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and define some manifestly SO(3)-invariant, self-dual two-forms via:

Ω1 ≡ h1

(
a2 dη ∧ σ1 − σ2 ∧ σ3

)
,

Ω2 ≡ h2

(
b2 dη ∧ σ2 + σ1 ∧ σ3

)
,

Ω3 ≡ h3

(
c2 dη ∧ σ3 − σ1 ∧ σ2

)
, (4.21)

for some functions, hj(η). The condition that Ωj be closed, and hence harmonic is:

d

dη
log(hj) = −a2

i ⇔ d

dθ
log(hj) = −a2

i

u2
, (4.22)

where

(a1, a2, a3) ≡ (a, b, c) . (4.23)

These equations imply that there are obvious local potentials, Bj , for Ωj:

Ωj = dBj , where Bj ≡ −hj σj . (4.24)

Remarkably enough, the equations for the hj are integrable in terms of u(θ) and we find:

h1 =
1

4
α1

u2

w1 sin(θ
2 )

, h2 =
1

4
α2

u2

w2
, h3 =

1

4
α3

u2

w3 cos(θ
2)

, (4.25)

where the αj are constants of integration. One should note that these solutions follow

from (4.7) and (4.8) and do not depend upon the specific choice in (4.11). However here

we focus on the solutions that arise from (4.11). To determine which, if any, of the hj gives

the desired harmonic form, we look at the regularity of these two-forms and examine their

behavior as θ → 0 and θ → π.

As θ → 0 we have:

h1 ∼ −1

2
α1 + O(θ4) , h2 ∼ −2α2 θ−1 + O(θ) , h3 ∼ 2α3 θ−1 + O(θ) , (4.26)

and as θ → π we have:

h1 ∼ 1

4
α1 r e−r +O(e−r) , h2 ∼ 1

4
α2 r e−r +O(e−r) , h3 ∼ 1

2
α3 + O(r−1) , (4.27)

where r = − log(cos θ
2). It follows that h1 is regular at θ = 0 and falls off very fast at

infinity. The corresponding two-form, Ω1, is globally regular and square-integrable and is

thus the harmonic form we seek. Indeed, at θ = 0 one has Ω1 = 1
2α1σ2 ∧ σ3 and σ2 ∧ σ3 is

the volume form on the bolt of unit radius, which means the period integral is given by:

∫

Bolt
Ω1 =

1

2
α1

∫

Bolt
σ2 ∧ σ3 = 2π α1 . (4.28)
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4.3 Ambi-polar Atiyah-Hitchin metrics

The most general SO(3) invariant metric governed by (4.5) requires one to use the most

general function, u(θ), in (4.9). As we will see, this possibility is usually ignored because

it leads to ambi-polar metrics, and we will show, in the next section, how such solutions

can be used to make new Lorentzian BPS solutions in five dimensions.

To understand how the inclusion of the extra function changes the Atiyah-Hitchin

metric, define ũ(θ) ≡ u(π − θ) and let w̃j(θ) be defined by (4.8) with u replaced by ũ.

It is evident that ũ(θ) also solves (4.7), indeed, it simply interchanges c1 and c2 in (4.9).

Therefore the functions w̃j also solve the system (4.5). On the other hand, from (4.8) one

can easily see that:

w1(π − θ) = −w̃3(θ) , w2(π − θ) = −w̃2(θ) , w3(π − θ) = −w̃1(θ) . (4.29)

Thus allowing a non-zero value for c1 and c2 means that asymptotic behavior of the wj at

θ = 0 is related to the asymptotic behavior at θ = π. In particular, because we now have

u(θ) ∼ −c1

π

√
2 cos

θ

2
log

(
cos

θ

2

)
, θ → π ,

u(θ) ∼ −c2

π

√
2 sin

θ

2
log

(
sin

θ

2

)
, θ → 0 , (4.30)

we therefore have, as θ → π:

w1(θ) ∼ c2
1

π2
log

(
cos

θ

2

)
, w2(θ) ∼ c2

1

π2
log

(
cos

θ

2

)
, w3(θ) ∼ c2

1

π2

(
log

(
cos

θ

2

))2

,

(4.31)

and, as θ → 0:

w1(θ) ∼ − c2
2

π2

(
log

(
sin

θ

2

))2

, w2(θ) ∼ − c2
2

π2
log

(
sin

θ

2

)
, w3(θ) ∼ − c2

2

π2
log

(
sin

θ

2

)
.

(4.32)

This means that the metric now has two regions that are asymptotic to R
3×S1 with a ∼ r

and b ∼ r as θ → π and with c ∼ r and b ∼ r as θ → 0. It therefore, naively looks like

a “wormhole” geometry. The asymptotics also imply that if the metric is positive definite

in one asymptotic region then it is negative definite in the other: a2, b2 and c2 all change

sign as one goes from θ = 0 to θ = π. One also sees from the asymptotics of w2 that w2

must have at least one zero in (0, π) and so the metric is singular at such a point. It is for

all these reasons that the generalization of the Atiyah-Hitchin metric is usually ignored.

However, this metric is ambi-polar and, as we will show, all the pathologies itemized here

are not present in the five-dimensional solution that can be constructed from this metric.

For simplicity, we will restrict our attention in this paper to ambi-polar metrics based

upon:

u(θ) =
1

π

√
sin θ

(
K

(
sin2 θ

2

)
+ K

(
cos2

θ

2

))
, (4.33)

– 16 –



J
H
E
P
0
8
(
2
0
0
7
)
0
0
4

0.2 0.4 0.6 0.8 1

-2

-1

1

2

Figure 1: This shows the three functions, wj , as a function of x = sin2 θ
2

when u is given by (4.33).

One has w1 < 0 and w3 > 0 and w2 has a simple zero at θ = π/2. All three functions diverge at

both ends of the interval.

then one has

w1(π − θ) = −w3(θ) , w2(π − θ) = −w2(θ) , w3(π − θ) = −w1(θ) ,

a2(π − θ) = −c2(θ) , b2(π − θ) = −b2(θ) , c2(π − θ) = −a2(θ) . (4.34)

With this choice one has u > 0, w1 < 0 and w3 > 0 for θ ∈ [0, π] and w2 has a simple

zero at θ = π/2. See figure 1. This means that the metric coefficients, a2
j , simultaneously

change sign at θ = π/2 and this is the only point at which this happens. Moreover, a2 and

c2 have simple zeroes while b2 has a simple pole at θ = π/2. This behavior of the metric

coefficients precisely mimics that of the ambi-polar GH metrics.

We note that the forms given by (4.21) and (4.25) are still “harmonic” in that they

are self-dual and closed. Moreover, Ω1 and Ω3 are non-singular in the wormhole geometry,

except that Ω1 remains finite as θ → 0 while Ω3 remains finite as θ → π. This means

that neither is square-integrable on the complete geometry. On the other hand, Ω2 falls

off exponentially at both θ = 0 and θ = π but is singular at θ = π/2, where the metric

changes sign. Once again this last flux has a behavior precisely analogous to the two-form

fields that were essential building blocks for the regular five-dimensional solutions that can

be built from ambi-polar GH metrics.

Finally, we should comment that more general choices of u(θ), such as taking c1 =

−c2 = 1 in (4.9), can result in solutions with zeroes for w1, w2 and w3. We have not

studied these in detail.

5. The BPS solutions

5.1 Solving the BPS equations

Since there is only one independent harmonic form in the Atiyah-Hitchin metric, this means

that the two-forms, Θ(I), in (3.3) must all be proportional to one another for I = 1, 2, 3.
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For simplicity, we will, in fact, take them all to be equal. We will also take the three

warp factor functions to be equal, ZI = Z, I = 1, 2, 3. Ignoring, for the present, issues of

regularity, the SO(3) invariant solutions of (3.3) are given by the Ωi of (4.21) and so we

will take

Θ(I) = Θ = Ω1 + Ω2 + Ω3 . (5.1)

The functions, hj , in (4.25) contain integration constants, αj, that make this an arbitrary

linear combination. Note: One should not confuse the index, I = 1, 2, 3 on Θ(I) with the

index, i = 1, 2, 3 on Ωi. The former indexes the U(1) gauge groups of three-charge system

while the latter labels the three distinct type of two-form in (4.21) that satisfy (3.3).

With this choice, the second BPS equation becomes:

d2Z

dη2
= 8

3∑

j=1

h2
j a2

j . (5.2)

Given the form of Θ, there is a unique Ansatz for the angular momentum vector, k:

k =

3∑

j=1

µj σj , (5.3)

which means that the third BPS equation yields three equations:

dµj

dη
− a2

j µj = 3hj a2
j Z , j = 1, 2, 3 . (5.4)

The factor of three comes from the sum over the U(1) label, I, in (3.5) and the choices:

Θ(I) = Θ, ZI = Z.

These equations can, once again, be integrated explicitly in terms of the the elliptic

function, u. First, from (4.22) we have:

dZ

dη
= γ0 − 4

3∑

j=1

h2
j , (5.5)

for some constant, γ0. Using (4.7) and (4.8) one can easily show that

d

dη

α2
j

wj
= u2 d

dθ

α2
j

wj
= α2

j + 4 (−1)j h2
j , (5.6)

and hence:

Z = δ + γ η −
3∑

j=1

(−1)j
α2

j

wj
, (5.7)

where γ = γ0 +
∑3

j=1(−1)jα2
j .

The last BPS equation, (5.4), can be integrated to yield:

µj =
3

hj

∫
h2

j a2
j Z dη =

3

hj

∫ (
− 1

2

d

dη
h2

j

)
Z dη , j = 1, 2, 3 . (5.8)
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It is easy to integrate this explicitly. First, by integrating by parts one can show:

3

hj

∫
h2

j a2
j

(
δ + γ η) dη = − 3

2
δ hj −

3

2
γ

[
hjη − (−1)j

α2
j

4hj

(
1

wj
− η

)]
+

βj

hj
, (5.9)

where the βj are constants of integration. The other parts of the integrals for µj can be

obtained from:

3

hj

∫
h2

j a2
j

wj
dη = (−1)j

α2
j

8hj

[
2wi wk

w3
j

− wi + wk

w2
j

]
,

3

hj

∫
h2

j a2
j

wi
dη = (−1)j+1

3α2
j

8hj

(wj − wk)

w2
j

, (5.10)

where i, j, k ∈ {1, 2, 3} are all distinct.

Thus, rather surprisingly, we can obtain the complete solution analytically in terms of

elliptic functions.

5.2 The bubbled solution on the standard Atiyah-Hitchin base

The physical intuition underlying BPS solutions is that all charges have to be of the same

sign so that the electromagnetic repulsion balances the gravitational attraction. Bubbled

geometries generically have geometric charges of all signs and then the attractive forces

are balanced by threading cycles with fluxes that then resist the collapse of the bubbles.

The result is then a stable configuration where the sizes of some of the bubbles are fixed

in terms of the fluxes that thread them. Such relationships are typically embodied in a

system of “Bubble Equations” [1, 11]. If one insists that a solution is a BPS configuration

but one does not have the forces properly balanced then the solution is then supported only

through the appearance of CTC’s. Thus, when investigating BPS geometries one typically

encounters the constraints of bubble equations through the process of eliminating CTC’s.

The standard Atiyah-Hitchin base metric is, in its own right, a well-behaved BPS

solution with no additional fluxes. Indeed, the addition of a flux through the non-trivial

two-cycle should drive the configuration out of equilibrium and expand the bubble. We

should therefore find irremovable CTC’s if we attempt to include a non-trivial flux. We

now show that this is precisely what happens.

As we remarked earlier, the only non-trivial, harmonic flux on the standard Atiyah-

Hitchin base is given by Ω1 and so we set α2 = α3 = 0 in the results of the previous

sub-section.8 We then find:

Z = δ + γ η +
α2

1

w1
(5.11)

and k = µσ1, where

µ = −3

2
δ h1 −

3

2
γ

[
h1η +

α2
1

4h1

(
1

w1
− η

)]
− α4

1

8h1

[
2w2 w3

w3
1

− w2 + w3

w2
1

]
+

β1

h1
. (5.12)

8If one is interested in solutions that are asymptotically AdS × S2, one could also investigate solutions

that contain the Ω3 component of the 2-form field strength Θ, which corresponds to constant flux on the

S2. Nevertheless, in our investigations this did not give any sensible solutions.
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It is interesting to note that the part of Z corresponding to the flux sources in (5.11) (i.e.

the w−1
1 term) is always negative, and therefore at infinity this warp factor looks like it

is coming from an object of negative mass and charge. This is however not surprising,

considering that the Atiyah-Hitchin space also looks asymptotically as a negative-mass

Taub-NUT space.

The value of β1 is fixed by requiring that µ does not diverge, and indeed falls off at

infinity. We find that if we set:

β1 =
π2 α4

1

8
, (5.13)

then this removes all the terms that diverge at infinity and leaves only terms that fall off.

Indeed, there are two types of such terms: Those proportional to γ, which fall off as 1
r , and

the remainder that fall off as re−r.

Near θ = 0 the function η is logarithmically divergent and so Z is logarithmically diver-

gent unless γ = 0. Physically, a non-zero value of γ corresponds to a uniform distribution

of M2 branes smeared over the bolt at θ = 0, with negative values of γ corresponding to

positive charge densities. If γ = 0 then Z = δ − 4α2
1 at θ = 0.

For constant time slices, the five-dimensional metric (1.2) becomes

ds2 =

(
1

4
a2 Z − µ2 Z−2

)
σ2

1 +
1

4
Z a2 b2 c2 dη2 +

1

4
Z b2σ2

2 +
1

4
Z c2σ2

3 , (5.14)

and so to avoid CTC’s, one must have Z ≥ 0 and the quantity:

Q =
1

4
a2 Z3 − µ2 (5.15)

must be non-negative. The function a(θ) ∼ 1
16θ2 as θ → 0 and Z diverges, at worst,

logarithmically. Thus we must have µ → 0 as θ → 0 in order to avoid CTC’s on the bolt.

(This is how the bubble equations arise on GH spaces.) This means that we must take

γ =
1

4
δ − 2

3
α−2

1 β1 =
1

4
δ − 1

12
π2 α2

1 . (5.16)

For pure-flux solutions, which have no singular sources, one must take γ = 0 and the

CTC condition (5.16) reduces to δ = 1
3 π2 α2

1. Then one finds

1

4
a2 Z − µ2 Z−2 ∼ − 1

3072
(12 − π2)α2

1 θ4 < 0 , (5.17)

and so one necessarily has CTC’s in the immediate neighborhood of the bolt. This is a

signal that there is no physical BPS solution based upon the standard Atiyah-Hitchin metric

with pure flux: The flux will blow up the cycle and there is no gravitational attraction

holding the bubble back.

One might hope that one could stabilize the solution with a distribution of M2 branes

on the bolt. While this might be possible in general, it does not seem to be possible with

a uniform, SO(3) invariant distribution. For this, one must have γ < 0 for Z to remain
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Figure 2: This shows plots of Z as a function of x = sin2 θ
2
. We have taken δ = 1, fixed γ in

terms of α1 using (5.16) and then we have chosen three values of α1 that ensure that γ is negative:

α1 = 0.6, α1 = 1.0 and α1 = 2.0. The steeper graphs at x = 0.5 correspond to larger values of α1.

Note that Z → 1 as x → 1, but that Z is generically negative for x > 0.6.

positive near θ = 0 and then (5.16) means that α2
1 > 3

π2 δ. In addition, we must have δ ≥ 0

for Z > 0 at infinity. From (5.5) one has

dZ

dη
= γ + α2

1 − 4h2
1 =

1

4
δ +

(
1 − 1

12
π2

)
α2

1 − 4h2
1 , (5.18)

and since h1 = −1
2 α1 at θ = 0 and h1 → 0 at infinity (θ = π) we see that dZ

dη is negative at

θ = 0 and positive at θ = π. Therefore, Z has a minimum for θ ∈ (0, π). While we have not

done an exhaustive analysis, we generally find that Z is negative at this minimum value.

Some examples are shown in figure 2. Obviously, the complete five-dimensional metric is

singular when Z < 0.

Adding the singular M2-brane sources does render Q positive in a region around the

bolt but, as one can see from (5.15), Q also goes negative shortly before Z goes negative.

Thus adding M2 branes sources moves CTC’s away from the bolt but at the cost of more

extensive singular behavior elsewhere in the solution.

5.3 Bubbling the ambi-polar Atiyah-Hitchin base

We now consider adding flux to one of the ambi-polar Atiyah-Hitchin metrics discussed in

section 4.3. That is, we will start with the ambi-polar “wormhole” geometry that arises

from the choice (4.33), which therefore has the reflection symmetry given by (4.34). The

solutions to the BPS equations have exactly the same functional form as those given in

section 5.1 for the standard Atiyah-Hitchin background. However, the underlying functions

now have very different asymptotic behavior and this affects all of the choices based upon

regularity and square integrability.
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Let r = − log(π − θ) and r̂ = − log(θ), then as θ → 0 one has

u(θ) ∼ 1

π
r̂ e−r̂/2 , η ∼ −η0 +

π2

r̂
,

w1(θ) ∼ − 1

π2
r̂2 , w2(θ) ∼ 1

π2
r̂ , w3(θ) ∼ 1

π2
r̂ , (5.19)

which implies

a2(θ) ∼ − 1

π2
, b2(θ) ∼ − 1

π2
r̂2 , c2(θ) ∼ − 1

π2
r̂2 . (5.20)

The constant, η0, is defined by:9

η0 ≡
∫ π

0

1

u(θ)2
= 2π . (5.21)

As θ → π one has:

u(θ) ∼ 1

π
r e−r/2 , η ∼ −π2

r
,

w1(θ) ∼ − 1

π2
r , w2(θ) ∼ − 1

π2
r , w3(θ) ∼ 1

π2
r2 , (5.22)

which implies

a2(θ) ∼ 1

π2
r2 , b2(θ) ∼ 1

π2
r2 , c2(θ) ∼ 1

π
. (5.23)

The metric in each of these asymptotic regions becomes:

ds2 ∼ − 1

4π2

(
dr̂2 + r̂2(σ2

2 + σ2
3) + σ2

1

)
, θ → 0 ,

ds2 ∼ 1

4π2

(
dr2 + r2(σ2

1 + σ2
2) + σ2

3

)
, θ → π . (5.24)

We thus have an ambi-polar metric with two regions that are asymptotic to different U(1)

fibrations over different R
3 bases. The metric changes sign precisely at θ = π

2 at which

point the metric function b2(θ) has a simple pole, while a2(θ) and c2(θ) have simple zeroes.

This time the appropriate “harmonic” form is Ω2 because we have:

h1(θ) ∼ −1

2
α1 , h2(θ) ∼ 1

4
α2 r̂ e−r̂ , h3(θ) ∼ 1

4
α3 r̂ e−r̂ , θ → 0 ;

h1(θ) ∼ −1

4
α1 r e−r , h2(θ) ∼ −1

4
α2 r e−r , h3(θ) ∼ 1

2
α3 , θ → π ; (5.25)

and so Ω2 is the only solution that falls off in both asymptotic regions. It is, however,

not really harmonic in that it is singular precisely on the critical surface where w2 = 0.

This is, however, the standard behavior for the flux that goes into making the complete,

five-dimensional solution and, as was noted in (3.35), the complete flux, C(3), is smooth on

the critical surface.

9While we haven’t proven that η0 = 2π analytically, we have checked numerically to over 100 significant

figures.
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One now has

Z = δ + γ η − α2
2

w2
(5.26)

and k = µσ2, where

µ = −3

2
δ h2 −

3

2
γ

[
h2η − α2

2

4h2

(
1

w2
− η

)]
− α4

2

8h2

[
2w1 w3

w3
2

− w1 + w3

w2
2

]
+

β2

h2
. (5.27)

Recall that the vector potential for Ω2 is given in (4.24) and so the potential for the

complete Maxwell field is:

A = Z−1
(
dt + µ σ2

)
− h2 σ2 . (5.28)

and so the only potentially singular term is:

Z−1 µ − h2 ∼ − α2

4u2 w2
(4w1 w3 + u4) , (5.29)

as w2 → 0. However, from (4.8) one has

w1 w3 +
1

4
u4 = w2 (w1 + w3) − w2

2 , (5.30)

and so the complete Maxwell field is regular.

The spatial sections of the complete five-dimensional metric are:

ds2 =

(
1

4
b2 Z − µ2 Z−2

)
σ2

2 +
1

4
Z a2 b2 c2 dη2 +

1

4
Z a2σ2

1 +
1

4
Z c2σ2

3 . (5.31)

First note that:

Z a2 =
w3

w1
((δ + γ η)w2 − α2

2) , Z c2 =
w1

w3
((δ + γ η)w2 − α2

2) ,

Z a2 b2 c2 = w1 w3((δ + γ η)w2 − α2
2) . (5.32)

Since one has w1 < 0 and w3 > 0 everywhere (see figure 1) it follows that these three

metric coefficients are regular and positive near w2 = 0.

More generally, observe that δ+γη → δ and w2 → −∞ as θ → π and δ+γη → δ−2πγ

and w2 → +∞ as θ → 0. This means that for the metric coefficients in (5.32) to remain

positive at infinity one must have:

γ ≥ δ

2π
≥ 0 . (5.33)

Indeed observe that the function, η + 1
2η0, is odd under θ → π − θ and so, for γ > 0, the

function

γ

(
η +

1

2
η0

)
w2 = γ(η + π)w2 (5.34)

is globally negative with a double zero at θ = π
2 . Thus the metric coefficients (5.32) are

globally positive when δ is the middle of the range specified by (5.33).
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Now consider the remaining coefficient, Z−2Q, where

Q ≡ 1

4
b2 Z3 − µ2 . (5.35)

Near w2 = 0 one has Z−2 ∼ α−4
2 w2

2 and

Q ∼ α6
2 w1 w3

u4 w4
2

(
w2 (w1 + w3) −

(
w1 w3 +

1

4
u4

))
+ O(w−2

2 ) . (5.36)

However, it follows from (5.30) that, in fact, Q ∼ O(w−2
2 ) and so the metric coefficient

Z−2Q is regular around w2 = 0.

The regularity of the solution near the critical surface was, of course, guaranteed by

our general analysis of the Toda metrics in section 3, but it is still useful to see how it

comes about here.

Finally there is the angular momentum vector and the issue of global positivity of Q.

For this it is most convenient to consider the combination h2 µ:

h2 µ ∼ 3

8
γ η0 α2

2 + β2 +
1

8
π2 α4

2 + O(θ2) , θ → 0 , (5.37)

h2 µ ∼ β2 −
1

8
π2 α4

2 + O((π − θ)2) , θ → π . (5.38)

Since h2 vanishes exponentially fast in r and r̂ in the two asymptotic regions (see (5.25)),

this means that µ will diverge exponentially in r and r̂ unless

β2 =
1

8
π2 α4

2 , γ = −2

3
π2 η−1

0 α2
2 = −1

3
π α2

2 . (5.39)

If these two conditions are met then µ also vanishes exponentially in r and r̂ in both of

the asymptotic regions.

Unfortunately this value of γ is inconsistent with (5.33). If one allows µ to diverge

exponentially in one of the asymptotic regions then Q will become negative in the asymp-

totic regions. This is because Z limits to a finite value and b2 diverges as a power of r or

r̂. Therefore there is no way to arrange the metric to be positive definite in the asymp-

totic regions on both sides of the wormhole: Either one has (5.33) and arranges that three

coefficients in (5.32) to be globally positive, or one arranges that Q > 0 only to have the

three coefficients in (5.32) to change sign in one of the asymptotic regions.

Thus we have a beautifully regular metric across the critical surface, but it fails to be

globally well-behaved as a “wormhole” metric. We suspect that the problem is due to the

high level of symmetry. With more bubbles and thus more parameters we believe that one

could simultaneously control behavior in both asymptotic regions. Even with the very high

level of symmetry, there is another way to remove the regions of CTC’s.

5.4 Pinching off the wormhole

One way to remove the region of CTC’s is to pinch off the wormhole before one encounters

the region where CTC’s occur. Here we will consider the ambi-polar metric described ex-

actly as above with the asymptotic regions as θ → π arranged to be regular and asymptotic
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to the U(1) fibration over R
3 as in (5.24). This requires one to take:

β2 =
1

8
π2 α4

2 , δ > 0 . (5.40)

The metric coefficients, a2
i , are non-vanishing away from the critical surface, and so

to pinch off the complete metric away from the critical surface we must arrange that the

function Z vanish at some point. To avoid CTC’s one must also ensure that Q is non-

negative near the pinch-off and so one must arrange that µ vanishes simultaneously with

Z. Thus we are looking for a point, θ0, such that

Z
∣∣
θ=θ0

= 0 , µ|θ=θ0
= 0 . (5.41)

Given these conditions, the equation of motion, (5.4), for µ then implies that d
dθµ must

also vanish at θ0. Therefore, near the pinching-off point we have:

Z ∼ z0 (θ − θ0) , µ ∼ µ0 (θ − θ0)
2 ,

(
1

4
b2 Z − µ2 Z−2

)
∼ 1

4
b2
0 z0(θ − θ0) . (5.42)

This means that the spatial part of the complete metric (5.31) is indeed pinching off in

every direction with surfaces of constant θ being a set of collapsing, squashed three-spheres.

The metric is not smooth at θ0: There is a curvature singularity in the spatial part of the

metric and the coefficient of dt2 is diverging as (θ−θ0)
−2. This reflects a similar divergence

in the electric component of the Maxwell fields, A(I), (see (3.2)) at Z = 0. One should also

note that the flux, Θ, is also singular at Z = 0 in that it remains constant while the cycle

that supports it is collapsing.

Define

γ̂ ≡ α−2
2 γ , δ̂ ≡ α−2

2 δ , (5.43)

then the conditions (5.41) relate γ̂ and δ̂ to θ0. Thus we can, in principle, choose the

pinching-off point and then (5.41) yields the corresponding values of γ̂ and δ̂. In practice,

there is the constraint that δ > 0. We know from the analysis above that we cannot arrange

for Z and µ to vanish simultaneously at θ = 0. Numerical analysis shows that one cannot

have Z and µ vanish simultaneously unless θ0 & 0.6158. Since we are interested in solutions

that contain the critical surface (w2 = 0), we have found a number of solutions that pinch

off for 0.6158 . θ0 < π
2 . We also checked numerically that it does not appear to be possible

to have all three of µ, Z and dZ
dθ vanish simultaneously for θ ∈ (0, π

2 ). Thus (5.42) appears

to be the general behavior at a pinch-off: Z does not appear to be able to have a double

root.

We have verified in several numerical examples that the spatial metric is indeed globally

positive definite in the region at and to the right of the pinch. These solutions still contain

the critical surface where the a2
i and Z simultaneously change sign and these solutions are

perfectly regular across the critical surface. The cost of ensuring the global absence of

CTC’s is to include a non-standard, singular point-source at the center of the solution.

To present an example, we considered the solution with γ = 0, δ = 1. Solving (5.41)

leads to α2 ≈ 0.4890 and the pinch-off at x = sin2(θ
2) ≈ 0.1837. In figure 3 we show plots
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Figure 3: These are graphs of Z (on the left) and µ (on the right) as functions of x = sin2 θ
2

for

γ = 0, δ = 1 and α2 ≈ 0.4890. Both functions are singular at x = 0.5 and both vanish, µ with a

double root, at x ≈ 0.1837.
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Figure 4: This graph shows the three metric coefficients in the angular directions, Za2, Z−2Q
and Zc2 (in this order from top to bottom on the right-hand side of the graph), as functions of

x = sin2 θ
2

for γ = 0, δ = 1 and α2 ≈ 0.4890. All of these functions vanish at the pinching-off point,

x ≈ 0.1837, and are positive-definite to the right of it.

of the functions Z and µ for these parameter values. Note that both are singular at x = 0.5

and that both vanish, µ with a double root, at x ≈ 0.1837. In figure 4 we have shown the

three metric coefficients in the angular directions, Za2, Zc2 and Z−2Q. All of them are

positive and vanish exactly at the pinching-off point.

Before ending this section we should make a few more comments about the metric

that is pinching off. The singularity at the pinch-off point is caused by the fact that the

warp factors ZI go to zero. This causes the size of the two-cycles wrapped by fluxes to

shrink to zero size, and hence the energy density coming from these fluxes to be infinite. A

well-known solution with a similar type of singularity is the one obtained by Klebanov and

Tseytlin [31]. However, for this solution it is well understood that the singularity comes

about because of the high level of symmetry in the Ansatz, and that upon considering a

less-symmetric base space the singularity is resolved [32]. Since the base space considered
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here also has a high level of symmetry, it is tempting to conjecture that, in analogy to

the Klebanov-Strassler solution [32], the pinching off will be resolved by the blowing up

of a two-cycle on the base, which will only be possible in a less-symmetric, non-singular

background.

We should also remark that in our discussion we have taken all three warp factors to

be equal, but generically we can also imagine pinching off the metric using only one of the

warp factors, and keeping the others finite. This will change the structure of the metric

near the singularity (some of the two-tori will blow up and some others will shrink), but the

singularity will also come from shrinking cycles on the base, and will probably be resolved

also by considering a less-symmetric base with a blown-up two-cycle

6. Variations on the Eguchi-Hanson metric

Given the foregoing results, particularly those involving wormholes, it is interesting to look

at the corresponding story for the Eguchi-Hanson metric [35]. This metric has an SO(3)×
U(1) invariance and the diagonal U(1) action is triholomorphic. The metric is equivalent

to a GH metric with two GH points of equal charge [36]. The manifestly SO(3) × U(1)

invariant form of this metric is:

ds2 =

(
1 − a4

ρ4

)−1

dρ2 +
ρ2

4

(
1 − a4

ρ4

)
σ2

3 +
ρ2

4
(σ2

1 + σ2
2) . (6.1)

The space contains an S2 (bolt) at ρ = a and so the range of the radial coordinate is

a ≤ ρ < ∞. At infinity this space is asymptotic to R
4/Z2.

To avoid closing off of the space at the bolt, we analytically continue by taking a2 = ib,

with b real, and introduce a new radial coordinate η = ρ2. One thereby obtains:

ds2 =

(
1 +

b2

η2

)−1 dη2

4η
+

η

4
(σ2

1 + σ2
2) +

η

4

(
1 +

b2

η2

)
σ2

3 . (6.2)

This metric was also considered by Eguchi and Hanson in [33], where it was called

“type I,” and was given in the form:

ds2 =

(
1 +

(
1 − a4

r4

)−1/2
)2

dr2

4
+

r2

8

(
1 +

(
1 − a4

r4

)1/2
)

(σ2
1 + σ2

2) +
r2

4
σ2

3 . (6.3)

This may be mapped to (6.2) via the coordinate change

η = r2

(
1 +

√
1 − a4

r4

)
. (6.4)

In terms of the Toda frame, (2.1)–(2.4), this metric was found in [28] and is given by

ν = log

(
z2 +

a4

16

)
− log(2) − 2 log

(
1 +

x2 + y2

8

)
. (6.5)

The reason why this metric was never studied in the past is that it is not geodesically
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complete, and there is a singularity at η = 0. Nevertheless, we can extend the coordinate

η = ρ2 to negative values, and the resulting space (6.2) has two regions, one where the

signature is (+,+,+,+) and one where the signature is (−,−,−,−) . This makes (6.2)

into precisely an ambi-polar metric of the type that can give a good five-dimensional BPS

solution: The overall sign of the metric changes as one passes through η = 0, with the

coefficient of a U(1) fiber becoming singular at this critical surface.

6.1 The BPS solutions

In order to solve the BPS equations, (3.3)–(3.5), it is convenient to introduce the basis of

frames given by:

ê1 = −
(

1 +
b2

η2

)−1/2
dη

2
√

η
, ê2 =

√
η

2
σ1 , ê3 =

√
η

2
σ2 , ê4 =

√
η

2

(
1 +

b2

η2

)1/2

σ3 (6.6)

One can then show that:

Θ =
α

η2
(ê1 ∧ ê4 + ê2 ∧ ê3) (6.7)

defines a harmonic, self-dual, “normalizable” two form for constant α. One also has Θ = dB

with B =
α

4η
σ3. As before, we take all three flux forms Θ(I) to be equal to Θ and set

ZI = Z. Then the equation for Z(η) becomes

d

dη

(
(η2 + b2)

dZ

dη

)
=

α2

2η3
(6.8)

which is solved by

Z(η) = γ +
α2

4b2η
+

(
α2

4b3
+

β

b

)
arctan

(η

b

)
, (6.9)

where β and γ are integration constants. The angular momentum vector, k, has a solution

of the form k = µ(η)σ3 where the function µ(η) satisfies

η3 dµ

dη
− η2µ +

3αγ

4
η +

3α

4

(
α2

4b3
+

β

b

)
arctan

(η

b

)
+

3α3

16b2
= 0 . (6.10)

The solution to this equation is

µ(η) = δη +
3α

8b2

(
α2

4b2
+ β

)
+

3αγ

8

1

η
+

α3

16b2

1

η2
+

3α

8b3

(
α2

4b2
+ β

)
η arctan

(η

b

)
+

+
3α

8b

(
α2

4b2
+ β

)
1

η
arctan

(η

b

)
. (6.11)

To complete the solution we have to impose boundary condition on the functions Z and µ.

6.2 A regular “wormhole”

If the solution is to have two asymptotic regions corresponding to η → ±∞ then we must

require that the angular momentum vector falls off in these regions or there will generically

be CTC’s. This implies:

δ = 0 , β = − α2

4b2
, (6.12)
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and then the functions Z and µ simplify to:

Z(η) = γ +
α2

4b2η
, µ(η) =

3αγ

8

1

η
+

α3

16b2

1

η2
. (6.13)

If γ 6= 0, Z will have a zero at η = − α2

4b2γ
and thus we will inevitably have CTC’s unless

we pinch off the solution before, or at, this point.

We consider γ = 0 first, for which we have:

Z =
α2

4b2

1

η
, µ =

α3

16b2

1

η2
. (6.14)

Note that the angular momentum function µ is always positive and is diverging on the

critical surface η = 0. The Z also diverges and changes sign on the critical surface. This

behavior ensures that the five-dimensional metric is regular and Lorentzian. The explicit

form of the space-time metric is:

ds2
5 = −16b4

α4
η2dt2 − 2b2

α
dt σ3 +

α2

16b2

dη2

(η2 + b2)
+

α2

16b2
(σ2

1 + σ2
2 + σ2

3) . (6.15)

This metric can be cast into a more familiar form by first diagonalizing the metric by

shifting the ψ-coordinate in (3.41) so that σ3 → σ3 +
16b4

α3
dt:

ds2
5 = −16b4

α4
(η2 + b2)dt2 +

α2

16b2

dη2

η2 + b2
+

α2

16b2
(σ2

1 + σ2
2 + σ2

3) . (6.16)

Change variables via η = b sinh χ, t̃ =
16b4

α3
t and then the metric becomes

ds2
5 =

α2

16b2
(− cosh2 χdt̃2 + dχ2 + σ2

1 + σ2
2 + σ2

3) , (6.17)

which is the well known metric for global AdS2 × S3. The complete Maxwell field on this

space is given by

dA = dΘ − d(Z−1(dt + k)) , (6.18)

and, using Θ = dB with B =
α

4η
σ3, we find

A = −4b2

α2
η dt , F =

4b2

α2
dt ∧ dη . (6.19)

The Maxwell field is thus proportional to the volume form on AdS2 and we have obtained

the global form of a Robinson-Bertotti solution. The wormhole thus reduces to the usual

global AdS solution.

In fact the solution based on the singular EH metric (6.2) (with η > 0) has also been

discussed in [9], where it was shown to give an AdS2 ×S3 solution with the AdS2 in global

coordinates. What we find very puzzling is the fact that in order to get the entire range

of coordinates for the global AdS2 metric, one must start from the ambi-polar EH metric

with the coordinate η running between −∞ and ∞.
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It is interesting to try to understand the reason for which we could find an Eguchi-

Hanson “wormhole” but not an Atiyah-Hitchin one. At an algebraic level, the problem

comes from the form of µ, which in the Eguchi-Hanson background goes to zero on both

asymptotic regions (6.13), while in the Atiyah-Hitchin background µ, (5.12), diverges in

one region or in the other. If one relaxes the requirement that the Atiyah-Hitchin solutions

be asymptotically flat, one can choose a more generic Θ, containing all three Ωi. However,

this still does not give a µ that decays properly at the two asymptotic regions.

6.3 A “pinch-off” solution

The other way to remove CTC’s is to allow γ 6= 0 in (6.9) and pinch-off the asymptotic

region with η → −∞ at the point, η0, where Z vanishes. This means that we only have to

require that µ vanish as η → ∞ and this implies

δ = − 3πα

16b3

(
β +

α2

4b2

)
(6.20)

in (6.11).

As with the Atiyah-Hitchin solution, the solution will have CTC’s near the pinching

off point unless we also require that µ vanishes at the same point. Specifically, the constant

time slices of the metric have the form:

ds2 = − µ2

Z2
σ2

3 + Z

((
1 +

b2

η2

)−1
dη2

4η
+

η

4
(σ2

1 + σ2
2) +

η

4

(
1 +

b2

η2

)
σ2

3

)
(6.21)

and to avoid CTC’s we must have

Q ≡ Z3

(
η2 + b2

4η

)
− µ2 ≥ 0 . (6.22)

If Z vanishes then µ must vanish and this imposes a relationship, akin to the bubble equa-

tions, on β, α and b. Unlike the corresponding solution in the Atiyah-Hitchin background,

there is still a free parameter in the final result, and if one choses these parameters in the

proper ranges one can arrange that the pinch-off occurs at η0 < 0 and that there are no

CTC’s in the region η > η0. There is still, however, a curvature singularity in the metric at

η = η0, similar to the one in the pinched-off Atiyah-Hitchin solution, and probably caused

also by the fact that the ansatz used is very symmetric. It is quite likely that this singular-

ity will also be resolved in the same manner as the Klebanov-Tseylin/Klebanov-Strassler

solutions [31, 32]

It is easy to find numerical examples that exhibit a “pinch off.” For example, one can

take the following values of the parameters:

α ≈ 4.2619 β ≈ −4.5358 γ = b = 1 and δ = − 3πα

16b3

(
β +

α2

4b2

)
, (6.23)

and the pinch off point is η0 ≈ −4.5721. Since η0 is negative this represents a solution

based upon a non-trivial ambi-polar base metric.
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7. Conclusions

We have investigated the construction of three-charge solutions that do not have a tri-

holomorphic U(1) isometry. We have found that the most general form of these solutions,

can be expressed in term of several scalar functions. One of these functions satisfies the

(non-linear) SU(∞) Toda equation, while the other functions satisfy linear equations that

can be thought of as various linearizations of the SU(∞) Toda equation.

We have also shown generically that in the region where the signature of the four-

dimensional base space changes from (+,+,+,+) to (−,−,−,−, ), the fluxes, warp fac-

tors, and the rotation vector diverge as well, but the overall five-dimensional (or eleven-

dimensional) solution is smooth. This is similar to what happens when the base-space

is Gibbons-Hawking, and strongly suggests that this phenomenon is generic: Any ambi-

polar,10 four-dimensional, hyper-Kähler metric with at least one non-trivial two-cycle can

be used to construct a regular supersymmetric five-dimensional three-charge solution upon

adding fluxes, warp factors and rotation according to the BPS equations (3.3), (3.4)

and (3.5).

This phenomenon is likely to be quite important in the programme of establishing

whether black holes are ensembles of smooth supergravity or string solutions. To prove

this conjecture, one would need to construct and count smooth horizonless solutions that

have the same charges and angular momenta as three-charge black holes or black rings.

Our analysis suggests that this counting problem is in fact much easier, since one would not

have to count the full solutions, but just the hyper-Kähler base spaces underlying them.

It also suggests that we may be able to capture the essential structure of the hyper-Kähler

base by approximating it with a quilt of GH spaces.

Since the most general form of hyper-Kähler, four-dimensional spaces with a rota-

tional U(1) isometry is not known explicitly, one cannot explicitly construct the most

general three-charge bubbling solution with this isometry. Nevertheless, we have been able

to construct a first explicit bubbling solution with a rotational U(1) starting from an ambi-

polar generalization of the Atiyah-Hitchin metric. For both the standard Atiyah-Hitchin

and Eguchi-Hanson metrics, it is not possible to construct regular three-charge bubbling

solutions. This reflects the fact that fluxes tend to stabilize cycles that would shrink by

themselves, and hence only “pathological” generalizations to ambi-polar metrics can be

used as base-spaces to create bubbling solutions. We have obtained the ambi-polar gener-

alizations of both the Atiyah-Hitchin and the Eguchi-Hanson spaces, and have constructed

the full three-charge solutions based on these spaces.

As expected from our general analysis, the full solutions are completely regular at

the critical surface where the metric on the base space changes sign. Moreover, for the

ambi-polar Eguchi-Hanson space, one can construct the full solution, which, interestingly

enough, turns out to be global AdS2×S3. We could also obtain solutions that pinch off, and

have a curvature singularity. We argued that this singularity has the same structure as the

10As explained in the bulk of this paper, an ambi-polar metric is one whose signature changes from

(+, +, +, +) to (−,−,−,−, ), such that the three-metric on the critical surface has two vanishing eigenvalues

and one divergent eigenvalue.
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one in the Klebanov-Tseytlin solution [31] and we believe the presence of this singularity

is a consequence of the high level of symmetry of the base space, and that the singularity

will similarly be resolved by considering a less-symmetric base space.

This work opens several interesting directions of research. First, having shown that sin-

gular, U(1)-invariant, ambi-polar, four-dimensional, hyper-Kähler metrics can give smooth

five-dimensional solutions upon adding fluxes, it is important to go back to the SU(∞)

Toda equation and to construct more general solutions. A first step in this investigation

would be to find the solutions of the Toda equations that give the U(1) × U(1) invariant

ambi-polar Gibbons-Hawking metrics, following perhaps the techniques of [29]. One could

then find other solutions in the vicinity of the latter, and count them using the techniques

of [38].

Second, the fact that the ambi-polar generalizations of the Atiyah-Hitchin and the

Eguchi-Hanson spaces give regular geometries suggests that ambi-polar generalizations of

other known hyper-Kähler metrics will also give regular solutions. Finding these solutions

would be quite interesting.

Finally, we have seen that the ambi-polar generalization of the Eguchi-Hanson space

yields a full geometry that is AdS2×S3. Moreover, unlike in the case of usual bubbling BPS

solutions, the AdS2 solution is not the Poincaré patch, but the full global AdS solution.

While the distinction between global and Poincaré AdS2 is relatively trivial, the appearance

of something like a regular wormhole suggests that bubbling geometries might be even richer

and more interesting than was originally anticipated.
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